

The objects of study of this course are (quasi-projective) varieties over an algebraically closed field $k \cong \bar{k}$

Def A variety over k is a reduced, separated, finite type scheme over k .

A scheme X is reduced if $\mathcal{O}_X(U)$ is reduced for all $U \subset X$ open.

A scheme X is integral if $\mathcal{O}_X(U)$ is an integral domain for all $U \subset X$ open.

Equivalently, X is reduced and irreducible.

A morphism of schemes $f: X \rightarrow Y$ is

- quasi-compact if the preimage of every open subset of Y is quasi-compact

- locally of finite type if for every open affine $\text{Spec}(B) \subset Y$ and open affine $\text{Spec}(A) \subset f^{-1}(\text{Spec}(B))$ the induced morphism $B \rightarrow A$ is a finite type morphism of schemes

- of finite type if it is quasi-compact and locally of finite type.

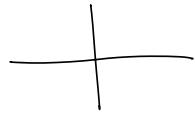
A scheme over k is a scheme X together with a morphism $X \rightarrow \text{Spec}(k)$ (called structure morphism)

Morphisms of schemes over k are commutative diagrams

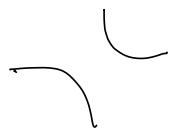
$$\begin{array}{ccc} X & \xrightarrow{f} & Y \\ & \searrow & \downarrow \\ & & \text{Spec}(k) \end{array}$$

Examples

$\text{Spec}(k[x,y]/(xy))$ is reducible, reduced, but not integral.



$\text{Spec}(k[x,y]/(xy-1))$ is integral.



Separatedness: "AG analogue of Hausdorff"

$f: X \rightarrow Y$ is separated if $\Delta: X \rightarrow X \times Y$ is a closed immersion.

$$\begin{array}{ccc} X \times Y & \xrightarrow{\Delta} & X \\ \downarrow f \times id & & \downarrow f \\ X & \xrightarrow{f} & Y \end{array}$$

Fact morphisms of affine schemes are separated

Cor. Δ_f is always locally closed immersion.

$\Rightarrow f: X \rightarrow Y$ is separated iff $\Delta(X) \subseteq X \times Y$ is closed.

"AG version of ^(relative) compactness"

Example Consider the line with two origins.

It is the scheme X obtained by gluing two copies of \mathbb{A}^1 along $\mathbb{A}^1 \setminus \{0\}$ by the identity:

$$X = U_1 \cup U_2 \quad \text{where } U_1 \cong \text{Spec}(\mathbb{k}[x])$$

$$\text{and } \text{Spec}(\mathbb{k}[x^{\pm 1}])_{U_1 \cap U_2} \xrightarrow{\cong} U_2 \cap U_1 \cong \text{Spec}(\mathbb{k}[x^{\pm 1}])$$

X is not separated.

Proposition $f: X \rightarrow Y$ is universally closed if for all $g: Z \rightarrow Y$

$f^!: X_{\times_Y} Z \rightarrow Z$ is universally closed.

$f: X \rightarrow Y$ is proper if it is
of finite type, separated, and universally closed.

Valuative criteria

A valuation on a field K is a map

$v: K^{\times} \rightarrow \Gamma$ to a totally ordered abelian group Γ

such that for all $a, b \in K^{\times}$

$$v(a+b) \geq \min(v(a), v(b))$$

$$v(ab) = v(a) + v(b)$$

A field K with a valuation v is called a valued field.

(K, v) valued field

Ring of integers: $R = \{a \in K^{\times} \mid v(a) \geq 0\} \cup \{0\}$

Example $k(t) \rightarrow \mathbb{Z}$

$f=t^n g \mapsto n$

w/ valued ring $k[t]$

or $k((t)) \rightarrow \mathbb{Z}$

$f = \sum a_n t^n \mapsto \inf \{n \mid a_n \neq 0\}$

this idea is basically
the same for any DNR
w/ uniformizer t .

Valuative problem:

for a morphism $f: X \rightarrow Y$

(K, v) valued field w/ valued ring

Valuative test diagram

$$\begin{array}{ccc} \text{Spec}(K) & \xrightarrow{\quad} & X \\ \downarrow & \dashrightarrow \varphi & \downarrow f \\ \text{Spec}(R) & \xrightarrow{\quad} & Y \end{array}$$

- satisfies the uniqueness part of the valuative criterion if there is at most one φ making the diagram commute.
- satisfies the existence part of the valuative criterion if there exists a φ making the diagram comm.

Theorem (Valuative Criterion)

Let $f: X \rightarrow Y$ is

- (1) separated iff it satisfies the uniqueness v.c.
- (2) universally closed iff it satisfies the existence v.c.
- (3) proper iff it satisfies both parts of the valuative

Example \mathbb{P}^1 is universally closed.

$$\text{Spec}(K) \xrightarrow{\pi} U_1 \cap U_2 \quad \pi^b(*) \in R \quad \checkmark$$

$$\text{Spec}(k[x^{\pm 1}]) \quad \pi^b(x) < 0 \Rightarrow \pi^b(x^{-1}) \in R \quad \checkmark$$

Challenge: Show \mathbb{P}^1 is separated. $\text{no } \text{Spec}(R) \rightarrow \text{Spec}(k[x^\pm])$

Dimension and regularity.

X irreducible scheme / k

$\dim(X) := \sup \{ \dim(\mathcal{O}_{X,x}) \mid x \in X \}$
 $Y \subseteq X$ irreducible closed subscheme

$\text{codim}_X(Y) := \dim(\mathcal{O}_{X,Y})$

Recall bijection $X \leftrightarrow \{Y \subseteq X \text{ irreducible}\}$

A scheme X is regular at $x \in X$ if

$\dim(\mathcal{O}_{X,x}) = \dim_{k(x)}(\mathcal{O}_x/\mathcal{O}_x^2)$

a scheme is regular if it is regular at all points.

- connected + regular \Rightarrow irreducible
- regular \Rightarrow reduced, normal.

Theorem (Jacobian criterion)

Suppose $U = \text{Spec}(k[x_1, \dots, x_n]/(f_1, \dots, f_m))$ has dimension d . Then U is regular @ p iff

$\left(\frac{\partial f_j}{\partial x_i} \right)_{i,j}$ has corank d @ p .